哈佛大学锁志刚院士课题组:光引发剂接枝的聚合物链用于水凝胶与其它材料的集成
软材料的众多应用需要将水凝胶与其它材料集成在一起。典型的例子包括组织工程和药物释放、生物相容性涂层、化学传感以及离电器件等。水凝胶的一锅法制备过程从小分子溶液开始,三个过程同时发生:单体连接成为分子链(聚合过程)、分子链交联形成网络(交联过程)、水凝胶网络与基底材料形成粘接(粘接过程)。这一并发性无法适用于水凝胶与渗透性材料(比如组织或者另外一个水凝胶材料)的集成。这些渗透性材料会吸收水凝胶预制液中的单体、引发剂和交联剂,进而造成副作用甚至产生毒性。因此,一个较为通用的集成方法十分重要。
图1:光引发剂接枝的聚合物链将水凝胶漆的制作者和使用者两种劳动力分开。
近日,哈佛大学锁志刚院士课题组对于水凝胶的集成研究有了新的进展。研究人员利用水凝胶漆的概念,完美解决了集成过程中小分子的扩散和残留问题。水凝胶漆将水凝胶和其它材料的集成过程分为两个步骤:第一个步骤由水凝胶漆的制作者完成 (maker),第二个步骤由水凝胶漆的使用者完成(user)。这种劳动力的分配使得制作者可以使用复杂的方法大批量生产水凝胶漆,使得使用者方便地应用水凝胶漆。现在已经使用的水凝胶漆都是以硅烷偶联剂接枝的聚合物链的形式存在的(silane-grafted polymer chains , SGPCs)。在固化过程中,硅烷偶联剂缩合形成交联点和粘接点。但是,这一缩合过程缺乏一个可控的触发机制。因此难以满足水凝胶漆的两个基本要求:长保质期和按需固化。
图2:PGPCs的合成与PGPCs水凝胶的力学性能。
为此,研究人员将单体分子与光引发剂共聚,形成光引发剂接枝的聚合物链 (photoinitiator-grafted polymer chains, PGPCs)(图 1A)。PGPCs是非交联的,可以以溶液、胶带和粉末等形式存在。它们可以通过粉刷、浸蘸、浇注、喷涂、旋涂和打印等方法,被应用于基底材料(图1B)。在紫外光灯的照射下,水凝胶分子链交联形成水凝胶网络,并与基底材料完成集成。水凝胶与基底材料之间可以通过直接的化学键、或者是拓扑纠缠形成粘接。PGPCs不含有任何单体分子,是没有毒性的。分子链的扩散系数远低于单体分子的扩散系数。因此当交联时间合适时,这一方法不会造成长程扩散。
作为证明上述想法的一个实例,实验使用4-丙烯酰羟苯甲酸苯酮 (4-Benzoylphenyl acrylate, 4-ABP)、丙烯酰胺单体 (AAm)、过硫酸铵热引发剂 (APS)、四甲基乙二胺催化剂 (TEMED)、溶剂水制备PGPCs。一个4-ABP分子有两个功能基团:用于聚合的双键基团和光响应的二苯甲酮基团(图2A)。在聚合过程中,使用热引发剂 APS。这样, 4-ABP可以通过双键基团共聚到分子链上,而二苯甲酮基团不参加反应被保留下来。在交联过程中,使用紫外光灯引发,二苯甲酮基团之间完成交联并且与基底材料之间完成粘接。因此,4-ABP分子在这一过程中同时起到了引发剂和交联剂的作用。力学测试表明,使用PGPCs制备的水凝胶具有低模量、高弹性、高韧性的良好力学性能(图2B-G)。
图3:使用PGPCs粘接两个湿的可渗透水凝胶。
研究人员进一步探究了PGPCs的应用。他们首先使用PGPCs粘接两个湿的可渗透的水凝胶材料。水凝胶和水凝胶之间的粘接韧性由90度剥离实验表征(图3)。粘接韧性随PGPCs中4-ABP含量的增加而增加。作为对比,PGPCs水凝胶的韧性随4-ABP含量的增加而减小(图2D)。注意到,尽管裂纹在界面扩展,粘接韧性比被粘接物的断裂韧性要高。这一现象可以做如下理解。当4-ABP的含量增加时,单位界面面积中粘接点的数目随之增加。剥离时,粘接层和被粘接物均被高度拉伸。裂纹扩展时,存储于两者内的弹性能被释放出来。这里的粘接韧性可以达到几百J m-2。作为对比,由纳米二氧化硅颗粒导致的粘接韧性在10 J m-2这一量级。如果在被粘接物中引入耗散机制,那么粘接韧性可以达到103 J m-2 这一量级。
图4:使用PGPCs在疏水的非渗透基底上形成亲水涂层。
在第二个应用中,PGPCs被涂覆在疏水的非渗透基底上,以形成亲水涂层。研究人员将弹性体浸蘸入PGPCs溶液后使用恒定速率将弹性体从PGPCs溶液中提出,并在紫外光灯下固化样品(图4A)。实验中使用了多种弹性体,包括天然橡胶、丁苯橡胶(SBR)、硅橡胶、乙丙二烯单体橡胶 (EPDM)、以及聚氨酯橡胶。当紫外光灯照射时,分子链上的二苯甲酮基团在分子链上产生自由基。也可能在基底材料中产生自由基。当两个自由基相遇时,两个聚合物链之间形成交联,聚合物和基底材料之间形成粘接。水滴在裸露的基底材料表面的接触角大于55°,而在有水凝胶涂层的基底上的接触角小于20°(图4B)。显微镜下的照片展示了SBR橡胶上的水凝胶涂层的厚度,大概为 50 μm (图4C)。水凝胶涂层和不同基底之间的粘接韧性由90度剥离实验表征(图4D)。
图5:PGPCs用于拓扑平板印刷术。
最后研究人员使用PGPCs将功能基团X在水凝胶基底上图案化。图案化的功能基团广泛存在于自然界的各种表面上。比如,人体内的细胞通过细胞膜上的功能基团互相识别和定位。功能基团还被图案化在不可渗透的基底材料上以引导细胞的生长。为此,将单体分子、光引发剂、功能基团X共聚,得到的分子链可记为PGPC-X (图5A)。随后, PGPC-X溶液被图案化至水凝胶表面,通过紫外光灯照射使其固化。在固化的过程中,聚合物链交联形成网络,并且与基底水凝胶形成拓扑粘接(图5B)。研究人员将这种方法称为拓扑平板印刷术(topological lithography)。实验以在PAAm水凝胶表面图案化聚异丙基丙烯酰胺水凝胶 (PNIPAM)为例,证明上述想法的可行性。这里,NIPAM同时作为PGPCs-X中的单体分子和功能分子。NIPAM与4-ABP共聚,形成PGPC-NIPAM分子链 (图5C) 。在图案化的过程中,迅速的扩散无法发生。在固化的过程中,聚合物链缓慢扩散至基底水凝胶中,并与其形成拓扑粘接。使用这种方法可以在PAAm水凝胶表面固定一个正弦曲线的图案。得到的试件是完全透明的。当试件浸入热水时,图案显现出来;浸入冷水时,图案消失。当试件受到拉伸时,图案不会从基底水凝胶上面脱落,证明两者之间具有良好的粘接性能。图案的精度取决于PGPC-X溶液的粘度和图案化的方法。通过使用刀片,实验中实现了~100 μm精度的图案。
讨论:PGPCs是不含有小分子的,是按需固化的,具有很长的保质期。上述应用表明,通过PGPCs可以将水凝胶与水凝胶、水凝胶与弹性体进行集成,且集成界面具有良好的粘接韧性。PGPCs还可以通过改进以满足各种各样的水凝胶与其它材料的集成需求。比如,PGPC溶液的粘度可以通过使用添加剂或者溶剂调节。PGPCs溶液是剪切变稀的,可以用于3D打印。当4-ABP的含量较高时,PGPCs是可以在有氧条件下固化的(oxygen-tolerant)。
这项研究工作发表于期刊Cell Reports Physical Science。论文第一作者为浙江大学-哈佛大学联培博士尹腾昊,第二作者为哈佛大学博士后Shawn R. Lavoie,浙江大学曲绍兴教授为论文共同作者,美国科学院院士、美国工程院院士、哈佛大学锁志刚教授为论文通讯作者。
论文链接:
https://www.cell.com/cell-reports-physical-science/fulltext/S2666-3864(21)00164-8
相关进展
哈佛大学锁志刚教授课题组与西安交大贾坤副教授课题组合作:离磁感应助力电子与离子间信号传递
哈佛大学锁志刚教授与西安交大卢同庆教授合作:韧性水凝胶在循环载荷下的裂纹敏感性
哈佛大学锁志刚院士课题组:率相关的纤维/基底界面对复合材料断裂韧性的影响
西安交大卢同庆教授课题组《AFM》:软湿材料强韧粘接的一种通用策略
哈佛大学锁志刚院士与西安交大唐敬达副教授《Matter》:抗疲劳复合水凝胶,模拟生物心脏瓣膜
美国两院院士锁志刚教授在西安交大毕业典礼上的致辞 | 今晚9点有直播访谈
美国两院院士哈佛大学锁志刚教授分享拓扑粘接方面最新进展| 视频回放
南科大软体力学实验室与哈佛大学锁志刚教授团队合作《Adv. Mater.》:具有复杂构型的水凝胶离电器件
哈佛大学锁志刚教授课题组:可降解聚合物中裂纹扩展‘超车’降解
哈佛大学锁志刚教授课题组:软材料粘接强度与韧性研究取得新进展
哈佛大学锁志刚教授课题组报道拓扑粘接新进展:快速强韧拓扑粘接剂
哈佛大学锁志刚教授课题组:纳米颗粒-弹性体复合材料助力可拉伸驻极体
哈佛大学锁志刚教授课题组:针对不同聚合物网络的双底漆粘接方法
美国哈佛大学锁志刚教授课题组:水凝胶-弹性体器件中的等离子现象
哈佛大学锁志刚教授与西安交大软机器实验室合作:聚合物网络刚度-疲劳门槛值的矛盾及解决方法
哈佛大学锁志刚教授和西安交通大学徐明龙教授课题组合作研发应用于全牙列动态咬合力测量的柔性传感器
哈佛大学锁志刚教授与西安交大软机器实验室合作《JMPS》:抗疲劳橡胶弹性体
哈佛大学锁志刚教授课题组《Materials Today》:抗疲劳材料设计一般原则
哈佛大学锁志刚教授和Robert D. Howe教授课题组合作:应用于软机器的贴附式大变形传感器
哈佛大学锁志刚教授课题组:可聚合、交联和表面粘接进程分离的新型水凝胶漆
哈佛大学锁志刚教授课题组:玻璃态分子链拓扑装订——强粘接低疲劳的透明可拉伸界面
哈佛大学锁志刚教授与浙江大学汪浩教授EML:一种凝胶脑机接口
美国哈佛大学锁志刚教授课题组:网络缺陷对软材料力学性能的影响
哈佛大学锁志刚教授课题组与西安交大软机器实验室合作研发水凝胶的可降解强韧粘接技术
哈佛锁志刚教授课题组与西安交大软机器实验室合作《Adv. Funct. Mater.》:研发软结构复合3D打印中的强韧粘接技术
哈佛大学锁志刚教授课题组与西安交大软机器实验室合作研发光响应可拆卸粘接技术
哈佛大学锁志刚教授课题组:设计分子拓扑结构达到强力干-湿材料粘接
哈佛大学锁志刚教授课题组综述 “水凝胶粘接:一种高分子化学,拓扑结构,和耗散机制的协同作用”
哈佛大学锁志刚教授课题组和麻省大学Ryan Hayward课题组:毛细弹性褶皱
哈佛大学锁志刚教授课题组《PNAS》:设计高韧性、低滞后性的可拉伸材料
加州大学洛杉矶分校贺曦敏教授和哈佛大学锁志刚教授合作:高性能水凝胶化学传感器
哈佛大学锁志刚教授课题组报道可拉伸密封层:同时实现可拉伸,低韧性和低可透性
哈佛大学锁志刚教授和Joost J. Vlassak 教授合作研制高度可拉伸、抗冻韧性水凝胶
哈佛大学锁志刚教授课题组首次报道含水材料拓扑粘接法“分子缝合”
哈佛大学锁志刚教授课题组报道软材料原位粘接法:适用于性质各异的软材料、任意加工工艺
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
点
这里“阅读原文”,查看更多